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Invited Article

Testing experimental analysis techniques for liquid crystals using
computer simulation

MARTIN A. BATES*

Department of Chemistry, University of York, York YO10 5DD, United Kingdom; e-mail: mb530@york.ac.uk

(Received 4 August 2005; accepted 25 August 2005 )

Computer simulation has been used widely over the last two decades to investigate the phase
behaviour and physical properties of liquid crystal systems. Here we review studies in which
simulations have been used to calculate information on the physical properties of liquid
crystals in a pseudo-experimental way. We concentrate on the calculation of ‘experimental
data’ from computer simulations, from which we can extract information on the structure
and dynamics of the nematic and smectic A phases. Where relevant, these are compared with
both existing theoretical and experimental results. In particular, routes between the raw
experimental data and physical parameters such as the orientational order parameter are
highlighted and their effectiveness investigated.

1. Introduction

Computer simulation has become widely used in the

field of complex liquids and is an important tool for

examining the structure and dynamics of condensed

matter systems. This field resides midway between

experiment and theory. Although simulations rely on

theoretical models, the techniques used are not analytic.

Rather, in a simulation we typically observe a model

system over a period of time or over statistically

relevant configurations and so perform an averaging

process similar to that when measuring any quantity in

an experiment, albeit in a computer and for a model

system. In this sense, simulation is a bridge between

experiment and theory. Here we concentrate on how

structural and dynamic information can be determined

from simulations, and how this can then be compared

with experimental and theoretical data. In particular,

we concentrate on simulations during which ‘experi-

mental’ data is obtained that can be analysed in exactly

the same way as the corresponding data from real

systems, as a way of testing the analysis routes.

This review is limited to a molecular model for liquid

crystals which Geoffrey Luckhurst has been instru-

mental in promoting; namely, the Gay–Berne model.

Rather than repeat work already discussed in a previous

review on the phase behaviour observed for the family

of Gay–Berne systems [1], we shall concentrate on three

computer ‘experiments’. We should note that there have

been many simulations in which physical properties

have been determined; for example, quanitities such as

the elastic constants [2, 3] and viscosities [4] have been

obtained from simulations. However, here we are

particularly interested in how simulations can help our

understanding of the analysis of real experimental data

rather than, say, just calculating the temperature

dependence of the elastic constants for a particular

model and comparing this with real data for typical

systems [2, 3].

As we shall see, in some cases the raw data calculated

from the simulations, such as the scattering patterns,

can be compared directly with that obtained from real

experiments. These comparisons can validate the

assumption that our model system is similar to real

systems. However, simulation results can be used in a

more interesting and useful way. Since we know the

location and orientation of every molecule in every

configuration, computer simulation can also give a

direct route to the exact value for characteristic

structural properties such as the nematic order para-

meter. In a real experiment, this has to be determined

indirectly from an experiment in which something is

measured (such as the splitting in an NMR experiment),

and the value of the order parameter inferred, often

using an assumption, rather than being determined

directly from the orientations which, of course, we have

no way of knowing for a real system. This means that if

we can determine ‘experimental’ data, such as the

scattering pattern, for the model liquid crystal and

analyse this using the same method as for real systems,

then we have two routes to the final answer: one direct
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route and one indirect route, via the analysis route that

is used to extract parameters from real systems. These

computer experiments allow us to test the validity of

any approximations used in the analysis, and whether

quantitative or only qualitative data can be extracted

from the real experimental results.

We begin, in the following section, with a brief

introduction to the Gay–Berne potential and the phase

behaviour observed for the particular model used for all

three experiments. In § 3, a method to calculate X-ray

scattering patterns from computer simulations is out-

lined. This section also includes a discussion of the

scattering patterns obtained for the Gay–Berne model.

In § 4 and 5, the translational and rotational dynamics

for the model system, respectively, are considered.

These sections also include discussions of the relevant

simulation results and their comparison with experi-

mental work where possible. Our conclusions are

presented in § 6.

2. The Gay–Berne model

The Gay–Berne potential was developed more than

twenty years ago, as a model for describing the

interactions between two elongated rigid molecules [5,

6]. The origin of the potential owed much to the

pioneering work of Corner [7] into the development of

pair potentials for molecules. He noted that the

Lennard–Jones 12–6 potential provided a good descrip-

tion of the potential between a pair of atoms and so

could also be used to describe the interactions between

larger molecules if their deviations from spherical

symmetry were coded into the potential. Although his

ideas worked reasonably well for small molecules such

as the nitrogen dimer, the potentials were not suitable

for more elongated molecules, especially those of

length-to-breadth ratios characteristic of liquid crystals.

Berne and Pechukas [5] and later Gay and Berne [6]

developed Corner’s idea into a more suitable form for

longer molecules. They showed that the interaction

potential between a pair of rigid, elongated molecules

could be reasonably well represented in a Lennard–

Jones 12–6 form by

UGB ûi, ûj, r
� �

~4e ûi, ûj , r̂
� � ss

r{s ûi, ûj , r̂
� �

zss

 !" 12

{
ss

r{s ûi, ûj, r̂
� �

zss

 !6
3

5

ð1Þ

where ûi and ûj are unit vectors describing the orientations

of the two molecules and r̂ is a unit vector along the

intermolecular vector r, with r5|r|. Unlike the scalar s in

the well known Lennard–Jones potential for atoms, the

distance parameter s ûi, ûj, r̂
� �

for elongated molecules

should be dependent on the orientations of the two

molecules and the intermolecular vector. This is written as

s ûi, ûj, r̂
� �

~ss 1{
x

2

ûi
:̂rzûj

:̂r
� �2

1zx ûi
:̂uj

� �z
ûi
:̂r{ûj

:̂r
� �2

1{x ûi
:̂uj

� �

 !" #{1
2

: ð2Þ

Although this looks complicated, it is just a way of coding

the shape of the molecule into the orientation dependent

contact separation. A key component of the potential is

the anisotropy in the shape of the molecule, x, which is

dependent on the length-to-breath ratio, k5se/ss, where

se and ss are the length and breadth of the molecule,

respectively, and defined by

x~
k2{1

k2z1
: ð3Þ

Similarly, the energy parameter e ûi, ûj, r̂
� �

should also

be orientation dependent; for brevity the corresponding

equations are not presented here, but are available in

the original paper [6] and an earlier review [1]. An

important parameter entering this term is the ratio of

the potential energy for a pair of molecules in the side-

by-side arrangement compared with that in the end-to-

end arrangement k95es/ee. Two further parameters, m
and n, allow some extra freedom when the potential is

fitted to particular models. Thus the Gay–Berne

potential depends on four unique parameters: k, k9, m
and n. Since there are an infinite number of possible

parameterizations and a number of variations have been

studied, we have introduced a mnemonic GB(k, k9, m, n)

to denote the different models [8]. Note that all

quantities for simulations using this model are quoted

in reduced units. For example, pressure is defined as

P�~Ps3
o

�
eo, distance r*5r/so, energy E*5E/eo, density

r�~rs3
o, temperature T*5kBT/eo, time t�~t eo

�
ms2

o

� �1
2,

scattering vector Q*5Qso52p/r*, diffusion coefficient

D�~D m
�

s2
oeo

� �1
2 and moment of inertia I�~I s2

o

�
m

� �
,

where eo and so(;ss) are the energy and distance scaling

parameters, respectively, and m is the mass of a

molecule [1, 8, 9].

Simulations have been used to construct the phase

diagrams for many variants of this model in which the

parameters are varied. In addition, other molecular

interactions, such as electrostatic potentials [10, 11],

have been added to the standard model and other

variants of the model, for example, an extension to

biaxial molecules [12], have been proposed. As these

have been reviewed elsewhere [1], we shall not discuss

them here. Rather we shall concentrate on a single
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parametrization that has been well studied, the

GB(4.4,20,1,1) model [8, 9], as our basic model

for typical liquid crystal systems. Note that these

parameters were chosen to reflect those expected for real

mesogenic molecules [13], rather than in the ad hoc way in

which Gay and Berne originally chose to parameterize

the model [6]. This version of the potential has a

reasonably rich polymorphism, exhibiting the isotropic,

nematic and smectic A phases common to many rod-

shaped liquid crystals. There is also a possibility of a

smectic B phase for this model, although the distinction

between this phase and a crystal B phase is rather subtle

in a simulation of a small system. The phase diagram of

GB(4.4,20,1,1) [8, 9] is shown in Figure 1. To construct

this phase diagram, a number of constant pressure

simulations were performed for each pressure [9], varying

the temperature between each run. The equation of state,

along with orientational and translational order para-

meters, can be determined from these simulations and so

the phase diagram can be constructed. We observe that at

relatively low pressures (see Figure 1), the GB(4.4,20,1,1)

mesogen undergoes a transition from the isotropic phase

directly to a smectic A. At a higher pressure, a nematic

phase is observed between these two phases. This model

therefore gives us the chance to investigate two different

phase sequences, SmA–I and SmA–N–I, using the same

model. This means that any differences observed for the

systems will be due only to density and temperature and

hence to the phase behaviour, rather than differences in

the model potentials.

Before we consider the computer experiments, as we

have already discussed, simulations are particularly

useful in that the locations and orientations of the

molecules are known. This means that molecular

snapshots can be used to characterize the phases. We

should point out, of course, that although these are

informative, they give only a subjective view of the

structure of the phase, and should not be relied on to

distinguish two phases. For example, it is difficult to

distinguish a nematic and a smectic A phase by eye

very close to the transition between these phases. To

characterize the phase unambiguously, the relevant

distribution functions and/or order parameters should

be determined [8]. However, since they are useful for

observing the differences in structure away from the

transitions, we show snapshots of the isotropic, nematic

and smectic A phases in Figure 2. The characteristic

orientational order in the nematic phase is clear when

compared with the isotropic, as is the layering in the

smectic A compared with the lack of positional order in

the nematic.

3. X-ray scattering

X-ray scattering is an important technique for the study

of liquid crystals [14] and is usually an invaluable tool

Figure 1. The phase diagram for the model mesogen
GB(4.4,20,1,1). The points show the transition temperatures
obtained from constant pressure Monte Carlo simulations and
the solid lines show the phase boundaries calculated from the
Clapeyron equation. (This figure is reproduced from [8, 9].)

Figure 2. Snapshots of configurations taken from simula-
tions of 16 000 molecules of (a) the isotropic, (b) the nematic
and (c) the smectic A phase of the GB(4.4,20,1,1) model. (This
figure is reproduced from [8, 9].)
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for the unambiguous identification of the phase

structure. Scattering patterns can also be used to

determine structural parameters such as the average
nearest neighbour separation and the smectic periodi-

city. Analysis of the arcs in scattering patterns should

also lead to the singlet orientational distribution

function [15]. The majority of experimental techniques

can yield only the lower moments of this distribution,

or order parameters, but not the distribution itself.

However, as we shall see by making certain assumptions

about the structure of the nematic phase, it is possible to
determine the full singlet orientational distribution

function from X-ray scattering patterns.

In principle, the calculation of the scattering pattern

from a simulation of an atom-based model is straight-

forward. Since the positions rj of the individual atoms

j51, …, Na in the system are known, the total scattering

intensity as a function of the scattering vector Q can be

obtained [15, 16]

IT Qð Þ~
XNa

j, k~1

aj Qð Þak Qð Þexp iQ:rjk

� �
ð4Þ

where the sum is over all distinct pairs of atoms j and k,

and rjk is their separation vector; aj(Q) is the atomic

scattering function. However, since we are using a

molecular potential, the calculation of the scattering

pattern is more problematic since individual atoms are

not represented in the model; rather, the molecule is

represented by a single object. To calculate the
scattering pattern, we replace the spherical scattering

sites used in the atomic calculations with elongated ones

to represent the rod-like molecules in the Gay–Berne

simulations [9, 17]. The scattering factor for such an

elongated particle depends on the orientation of the

ellipsoid with respect to the scattering vector in addition

to the magnitude of the scattering factor |Q|. A simple,

although not unique, way to mathematically describe
the dependence of the scattering factor for the elongated

object is to stretch the scattering factor of a sphere [16]

in a direction along the molecular long axis, to result in

a scattering ellipsoid. Note that this approach also has

the advantage that it is easily extendable to disc-shaped

objects by squashing the sphere in a single direction.

The equations necessary to calculate the scattering

patterns based on a scattering ellipsoid approach are
similar to those for the atomic case, but as we are now

dealing with non-spherical scattering objects, the

scattering factors necessarily depend on the orientations

of the molecules with respect to the scattering plane; the

full equations for these are given in [9, 17]. In particular,

the total scattering intensity for a molecular system can

be written in a form similar to that for the atomic case,

equation (4), as

IT Qð Þ~
XNm

j, k~1

F j ûj, Q
� �

F k ûk, Q
� �

exp iQ:rjk

� �
ð5Þ

in which the sum over pairs of distinct atoms is replaced

with a sum over distinct pairs of molecules j, k51, …, Nm

and the orientation dependence of the molecular scatter-

ing function F j ûj, Q
� �

for molecule j is clear. Note that

although this form (equations (4) and (5)) of the

scattering intensity is particularly simple, for computa-

tional reasons it is better replaced by the product of two

sums over a single molecular index [9, 17, 18].

To determine the scattering patterns for each phase,

molecular dynamics simulations at state points corre-

sponding to the smectic A, nematic and isotropic phases

along the isobar at P*52.0 were performed for the

GB(4.4,20,1,1) model [8]; these are T*51.4, r*50.1932

(smectic A), T*51.6, r*50.1756 (nematic) and T*51.8,

r*50.1562 (isotropic). Full details of the molecular

dynamics simulations for this model are described

elsewhere [8, 9, 19, 20]. To be able to observe the fine

details in the scattering patterns, large systems were

found to be necessary. Here systems of 72 000 molecules

in a slab geometry, extended in the x and z directions

were used [17].

The intermolecular scattering patterns were obtained

by analysing 50 well spaced configurations from the

three simulations and are shown in figure 3. The broad

ring observed at T*51.8, figure 3 (a), indicates the lack

of long range orientational order in the isotropic phase.

For the nematic phase, figure 3 (b), the anisotropy in

the scattering pattern is evident by the break in this ring.

By assuming a model for the packing of the molecules in

the nematic phase [15], we can estimate the average

molecular spacing. In contrast to the comparative

laboratory experiment, we can compare the results

using this assumed model with the exact pair distribu-

tion available directly from the simulation. The max-

imum intensity in the equatorial arc for the nematic

phase occurs at Q�\~1:90p leading to an average side-

by-side spacing d�\~1:05. The random packed

(d�m~1:12d�\) and close packed (d�m~1:15d�\) cylinders

models describing the local packing in a liquid crystal

phase [15] give the average spacing d�m to be 1.18 and

1.20, respectively, both of which are in good agreement

with the position of the first peak in the pair

distribution function at r*51.21 for the nematic phase

[8]. Thus for the nematic phase it is not possible to

distinguish between the random and close packed

models; this is hardly surprising given the small

difference between them and lack of translational

structure in the nematic, which is responsible for the

broadness of the nearest neighbour peak for the nematic
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phase. In the scattering pattern for the nematic, there is

also a peak shaped like a short arc along the meridional

axis at Q�E~0:515p. This peak corresponds to a spacing

d�E~3:88 or 0:88l
�
:

2

, where l* is the molecular length,

which is similar to the values found for real nematics

(d||<0.90l) [15]. The origins for this peak are discussed

elsewhere [14, 15, 17]. On cooling into the smectic A

phase, figure 3 (c), the features in the scattering pattern

do not change dramatically. The equatorial arcs are

somewhat narrower and more intense, as expected given

the higher orientational order at lower temperatures.

We also observe that the meridional peak at Q�E~0:52p

is much more intense than the equivalent peak in the

nematic phase, and a second peak along the axis at

Q�E~1:04p is also present. The layer spacing, d*,

calculated from the positions of these peaks is 3.82,

which is in good agreement with the value of 3.85

estimated previously from the longitudinal distribution

function gEðr�EÞ [8, 9].

So far we have seen that the scattering patterns for the

isotropic, nematic and smectic A phases are similar to

their counterparts in real experiments. This, of course,

gives us confidence that the organization of the molecules

in these phases in the model system are similar to those

for real systems. In principle, this means that the

scattering patterns could be determined from all simula-

tions as a way of characterizing the phases observed in the

simulation. However, given the large systems necessary

and the long times needed to compute the patterns (see [9,

17]), this is not an effective route to the characterization

of the phase behaviour. Indeed, determination of the

order parameters and correlation functons is a much

faster and simpler route to this information.

The scattering patterns obtained from the simulations

are useful, however, when it comes to testing the

theoretical assumptions made in the analysis of real

scattering patterns. We have already seen that we can

determine physical parameters such as the layer spacing

in the smectic A phase and the average molecular spacing

from the location of the various features in the scattering

pattern. However, the defining characteristic of a liquid

crystal is the long range orientational order, which is

quantified by the singlet orientational distribution

function. The relationship between the intensity distribu-

tion, I(h), around the equatorial arc and the correspond-

ing singlet orientational distribution function, f(b), has

been a subject of interest since, in principle, it should be

possible to extract the latter from the former. However, it

has not been possible to test the assumptions behind the

proposed theories that are used to extract f(b) for real

liquid crystal systems, since this distribution cannot be

determined using other experimental techniques and

therefore the approximations in the analysis have not

been tested for real data. However, with the simulations,

this does now become possible since the orientational

distribution can be obtained both directly from the

simulation and indirectly from the scattering pattern of

the model system, and so the accuracy of the different

routes can be examined.

Two models have been proposed for extracting the

singlet orientational distribution function, both of

which rely on the assumption of locally aligned clusters.

For a perfectly aligned but translationally disordered

system, the equatorial scattering is confined to the

equatorial plane [15]. This implies that the equatorial

arcs observed in the scattering pattern of the nematic

phase can be considered to arise from different domains

in which perfect orientational order exists. The most

simple approximation (Vainshtein’s method) [21] is to

identify the intensity around the arc, I(h), as the singlet

orientational distribution function, f(b). This approach

can be justified theoretically if the orientations of the

molecules are confined to the plane defined by the

director and the scattering vector, an approximation

which becomes closer to reality at high orientational

order. For nematic systems with high orientational

order, the cone of angles within which the molecules

Figure 3. Qxz intermolecular scattering patterns calculated
for a system of 72 000 molecules along the isobar P*52.0 at
temperatures (a) T*51.8 (isotropic), (b) T*51.6 (nematic) and
(c) T*51.4 (smectic A). The patterns are calculated for
scattering vectors Q�x and Q�z~{3p . . . z3p. (This figure is
reproduced from [9, 17].)
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tend to align is narrow and so this should be a

reasonable approximation. However, for real nematics,

the cone of orientations is broad and so the approxima-

tion is expected to worsen as the system becomes less

orientationally ordered. An improvement on this

approximation was made by Leadbetter and co-workers

[15, 22, 23] in which all orientations of the small aligned

cluster are allowed. The angular intensity can then be

related to the distribution function by [22, 23]

I hð Þ~
ðp

2

h

f bð Þ sec2 h tan2 b{tan2 h
� �{1

2sin b db: ð6Þ

We note that, although both these methods are based

on an aligned clusters assumption, this latter is often

called the aligned clusters method. Schemes for inver-

sion necessary for the aligned clusters model are given in

[9, 17] and references therein.

Molecular dynamics simulations were performed at

various temperatures to investigate the scattering

patterns for nematic phases with varying degrees of

orientational order, and the temperature dependencies

of the scattering pattern and the angular intensity

distributions are shown in figure 4. As the system is

heated, the equatorial arcs become both broader and

less intense until the scattering pattern consists of a

single ring, characteristic of the isotropic phase (not

shown). The angular intensity distribution was calcu-

lated from these patterns by integrating across the arc at

fixed angle. Note that all distributions are normalized

such that
Ð

f bð Þsin b db~1 [9, 17]. For the isotropic

phase (not shown), the angular intentsity distribution is

found to be flat, as expected. In contrast, for the

nematic the intensity distribution has a maximum at

h50u and decreases to a minimum at 90u, again as we

expect since the molecules tend to align in a common

direction. At the lowest temperature (T*51.2), the

agreement between the aligned clusters method and the

exact distribution determined in the simulation is very

good. Vainshtein’s approximation also gives a distribu-

tion of the correct shape but the maximum at 0u is

relatively low, and so any order parameters calculated

from this would be expected to be on the low side.

Indeed, for comparative purposes we have calculated

the nematic order parameter, P2, and the values are

0.63¡0.01 and 0.58¡0.01 for the aligned clusters and

Vainshtein methods, respectively, whilst that measured

in the simulation is 0.62¡0.01. As the temperature is

increased, we observe a similar pattern. At the highest

temperature in the nematic (T*51.5), the aligned

clusters model gives a distribution which is again very

close to the true distribution although again very

slightly high, whereas Vainshtein’s approximation

gives a distribution which is too disordered. The

corresponding values for P2 are 0.31¡0.01 (simula-

tion), 0.31¡0.01 (aligned clusters) and 0.23¡0.01

(Vainshtein). Thus we can conclude that, of the two

proposed routes to the singlet orientational distribution

function, the aligned clusters model of Leadbetter and

co-workers [22, 23] performs well over the entire

nematic range, whereas the simple approximation of

Figure 4. Qxz intermolecular scattering patterns calculated
for a system of 16 000 molecules along the isochore r*50.16 in
the nematic phase at temperatures (a) T*51.2, (b) 1.3, (c) 1.4
and (d) 1.5. The patterns are calculated for scattering vectors
Q�x and Q�z~{3p . . . z3p. The corresponding (N) singlet
orientational distribution function, (solid line) aligned clusters
model result and (dotted line) Vainshtein’s approximation for
the distribution function are shown in each case. (This figure is
adapted from [9, 17].)
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Vainshtein [21] does not fare so well, especially when the

orientational order is low. This is entirely as we expect,

since the cone of angles within which the molecules tend

to align becomes broadened with increasing tempera-

ture and so this approximation becomes gradually

worse.

4. Translational diffusion

The characteristic of any liquid is the ability of the

constituent molecules to flow. Liquid crystals are in no

way different, albeit that their translational diffusion is

affected by the orientational, and perhaps positional,

order of the system. Diffusion in the nematic phase is

reasonably well understood [24–26]. For the nematic

phase, the diffusion coefficient parallel to the director,

D||, is often found to be ,2–4 times larger than that

perpendicular to the director, DH. The relative differ-

ence in magnitude of the two principal diffusion

coefficients can be readily linked theoretically with the

extent of the orientational order in the nematic phase

[25, 26]; note that these two theories give very different

predictions depending on the extent of the order,

especially in the high order limit. Computer experiments

on both hard ellipsoidal bodies [26] and Gay–Berne

systems [9] have been performed to determine the

dependence of the ratio D||/DH on the nematic order

parameter. For both types of model, the theory of Hess

[26] appears to describe the dependence of D||/DH on P2

reasonably accurately. Typical results for the Gay–

Berne model are shown in figure 5 [9]. Although the

results seem to cluster around the theoretical result of

Hess, we note that the ratio at higher order parameter

for each series tends to dip below the theoretical

prediction. This may well be due to instantaneous,

local smectic-like structures appearing in the nematic

before the transition to the smectic phase, which are not

accounted for in the theory [9].

Diffusional behaviour for the smectic A phase is less

obvious. The only difference between the smectic A and

the nematic phases is the layering exhibited by the

former. This should hinder diffusional motion parallel

to the director while hardly affecting motion perpendi-

cular to it. Thus the layering should lead to a decrease in

D|| but not influence DH, leading to a possible inversion

of the ratio D||/DH. Here we shall use simulation to test

the validity of analytic theories of translational diffu-

sion that allow for the influence of the layer structure of

the smectic A phase on the motion parallel to the

director, from which the barrier for diffusion between

the layers can be extracted.

To investigate translational diffusion in the liquid

crystalline phases of GB(4.4,20,1,1), we have used

molecular dynamics simulations to study a number of

state points taken from the two different isobars. We

use a large system of 16 000 molecules as, for such large

systems, the motion of the director is extremely slow

and so the director is essentially stationary during the

time taken for a molecule to diffuse over a distance

comparable to the molecular length. Indeed, for such

systems the director orientation remains constant over

much longer timescales such that end-over-end rotation

(see § 5) can also be studied in a fixed laboratory frame

[27]. This is not the case for smaller systems of the order

of a few hundred molecules, where the rotational

motion of a single molecule necessarily has a larger

effect on the orientation of the director. Full details of

the simulations are given elsewhere [9, 19, 20, 27].

The diffusion coefficient for an isotropic liquid can be

calculated from either a Green–Kubo formula, invol-

ving the integration of the velocity autocorrelation

function, or from the time gradient of the mean squared

displacement [28, 29]. These results are readily extended

for anisotropic liquids. For example, the components of

the anisotropic diffusion tensor can be determined from

the slope of the mean square displacement versus time,

resolved along directions parallel and perpendicular to

the director, using an anisotropic version of the well

known Einstein relation

2DE~ lim
t??

L
Lt

SDr2
E tð ÞT

2D\~ lim
t??

L
Lt

SDr2
\ tð ÞT

ð7Þ

Figure 5. The anisotropy ratio of the diffusion coefficients
(D�E

.
D�\) plotted against the second rank orientational order

parameter P2 from the simulations (̂) at a constant density
r*50.16 and (N) at a constant temperature T*51.60. Also
shown are the predictions of Chu and Moroi [25] (dotted line)
and Hess [26] (solid line). (This figure is reproduced from [9].)
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in which SDr2
E tð ÞT and SDr2

\ tð ÞT are the resolved

components of the mean square displacement,

SDr2
E tð ÞT~S rE tð Þ{rE 0ð Þ

� �2T~Sjrz tð Þ{rz 0ð Þj2T

SDr2
\ tð ÞT~S r\ tð Þ{r\ 0ð Þð Þ2T~Sjrx tð Þ{rx 0ð Þj2T

~Sjry tð Þ{ry 0ð Þj2T

ð8Þ

where we have assumed that the z-axis defines the

director orientation. Note that rH(t)2rH(0) is the

distance travelled in time t along a particular direction

perpendicular to the director, and not the total distance

travelled in the perpendicular plane [9]. Since we are

primarily interested in the uniaxial nematic and smectic

A phases, we report a single perpendicular diffusion

coefficient which was obtained by taking advantage of

the phase symmetry by averaging over two mutually

orthogonal directions in the perpendicular plane.

Similar extensions are available for the Green–Kubo

route to the diffusion constants [20].

In a solid, the temperature dependence of the

diffusion coefficient can be described by the Arrhenius

equation,

D~D0 exp {E=RTð Þ ð9Þ

where E is the activation energy or the height of the

potential barrier over which a particle must jump to

move from one lattice site to another. The structural

disorder of liquids implies that there is no such precise

meaning for E in liquid phases. Nonetheless, equa-

tion (9) is found to give a good description of

experimental data measured for many isotropic liquids.

As liquid crystals are observed between the solid and the

liquid phases, it is reasonable to assume that an

Arrhenius-type law will also hold for these phases and

this indeed is found to be the case [24]. The temperature

dependences of the diffusion coefficients D|| and DH

can, therefore, be written as

DE~D0E exp {EE
�

RT
� �

D\~D0\ exp {E\=RTð Þ:
ð10Þ

Just as for isotropic liquids, the parameters in equa-

tions (10) do not have such a simple physical meaning as

those in the solid. Indeed, for liquid crystals, the

anisotropy in the diffusion tensor depends on the

second rank orientational order parameter as we

discussed earlier, which itself is strongly dependent on

the temperature, especially near the N2I transition; and

so it is difficult to assign physical meaning to these

parameters, since E|| and EH may also be temperature

dependent. However, despite this apparent contradic-

tion with the simple Arrhenius behaviour, these

equations are found to fit the temperature dependence

of the diffusion coefficients of real mesogens in many

cases [24], presumably because the liquid crystalline

phases are stable over only a small temperature range.

The temperature dependence of the diffusion tensor

was determined along the two isobars; these are shown

in figure 6. On cooling past the clearing point, we

observe two rather different sets of results, depending

on the phase behaviour of the system. At P*51.0,

figure 6 (a), the isotropic phase undergoes a transition

directly into the smectic A phase. The Arrhenius

equation still gives an extremely good description of

Figure 6. The temperature dependences of the diffusion
coefficients along the isobars (a) P*51.0 and (b) 2.0. We
show the (N) parallel and (#) perpendicular diffusion
coefficients in the nematic and the smectic A phases and the
average diffusion coefficients in the (6) isotropic and (+)
nematic phases. The lines indicate the best fit for the
Arrhenius law. (This figure is reproduced from [9, 20].)
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the temperature dependencies of the parallel and

perpendicular diffusion coefficients in this phase. Just

below the SmA–I transition, we find that D�E and D�\ are

approximately equal. However, the parallel diffusion

coefficient decreases with decreasing temperature more

rapidly than does the perpendicular coefficient. Thus we

observe that, deep into the smectic A phase diffusion

perpendicular to the director is faster than diffusion

parallel to the director, and so we may conclude that the

molecules diffuse within the layers more readily than

between the layers. Thus the diffusional behaviour is, as

it is sometimes called, smectic-like (somewhat mislead-

ingly given that often D||.DH for smectic phases near a

weak SmA2N transition [24]), indicating that the

diffusion is faster within the layer than between the

layers; the opposite to this is nematic-like diffusion,

where diffusion is more rapid along the director than

perpendicular to it. We note that the diffusion

coefficient drops by a factor of four or five at the

SmA–I transition, indicating the far more viscous

nature of the smectic A phase.

At P*52.0, a nematic phase is found between the

smectic A and the isotropic phases. We again observe

that the Arrhenius equation gives a good description of

the temperature dependences of the diffusion coeffi-

cients in each phase, figure 6 (b). In the nematic phase,

D�E is found to be larger than D�\ over the whole

temperature range of the nematic, from which we may

conclude that the molecules diffuse faster parallel to the

director than perpendicular to it, and hence the

diffusion is nematic-like, as we expect. This is entirely

consistent with the theory of Hess [26] as we have

already reported. As the N2I transition is weak and the

local molecular environment in these two phases is

similar, we expect that there should be no difference

between the extrapolated values of the isotropic

diffusion coefficient and the average nematic diffusion

coefficient at the transition. Indeed, these extrapolated

values are very similar although we note that the

average diffusion coefficient SD�T~ 1
3
ðD�Ez2D�\Þ just

below the N2I transition is slightly higher than the

isotropic diffusion coefficient just above the transition;

this is often seen for real systems [24]. On further

cooling within the nematic phase, both D�E and D�\ are

observed to decrease, as we expect given the tempera-

ture dependence of diffusion coefficients. We find that

the negative slope for the perpendicular coefficient is

very slightly larger than that for the parallel coefficient;

this can be related to the increase in order as the system

is cooled as we discussed earlier [20, 26]. At the

transition into the smectic A phase, we observe a small

jump in both the parallel and the perpendicular

diffusion coefficients, although the slope of the

Arrhenius plot does not change significantly for the

perpendicular diffusion coefficient. Indeed, we find that

a single Arrhenius fit gives a good description of D�\
over both the nematic and the smectic A temperature

ranges, and so we conclude that diffusion perpendicular

to the director is similar in both these phases. In

contrast, we find a large change in the slope for the
parallel diffusion coefficient. Just below the SmA–N

transition, the diffusion is still nematic-like (D�E > D�\)

but, as the temperature is lowered, a cross-over point

occurs at which this ratio inverts and D�E is then less

than D�\ for all lower temperatures.

The two types of behaviour that we have found along

the isobars P*51.0 and 2.0 are commonly observed in

experiments on real mesogens. Indeed, both types of
behaviour are often exhibited in the same homologous

series. For example, Krüger [24] has studied transla-

tional diffusion in the liquid crystalline phases of a

number of the 4-alkanoylbenzylidene-49-aminoazoben-

zenes (Cn-BAA). The stability range of the nematic

phase of C6-BAA is quite wide and the Arrhenius plot is

similar to that along the isobar P*52.0; they observe

that D||.DH, D||<DH or D||,DH, depending on the
temperature. In contrast, the nematic phase of C12-BAA

is very narrow and there is a large jump in the di-

ffusion coefficients at the transition to the smectic A

phase; throughout the smectic A range of C12-BAA,

D||,DH.

Volino and co-workers [30, 31] have proposed a

model to explain the temperature dependence of the

parallel diffusion coefficient in both the nematic and the

smectic A phases using a single Arrhenius fit, but taking
into account an extra potential barrier due to the

layering in the smectic A phase. It is assumed that the

parallel diffusion coefficient in the nematic phase

follows a simple Arrhenius behaviour, whilst the

diffusion in the smectic A phase follows exactly the

same Arrhenius-type process, that is, has the same

temperature dependence as in the nematic. However, an

extra term is included to account for the periodic
potential experienced by a molecule diffusing parallel to

the director in the smectic A phase. It is assumed that

this potential can be written as a simple cosine function,

in keeping with McMillan’s theory of the smectic A

phase [32] and the dominance of the first rank

translational order parameter t15<cos(2pz/d)> (c.f.

[8]). The potential is written as

U zð Þ~{
u

2
cos 2pz=dð Þ ð11Þ

where d is the layer spacing, z is the distance of the

molecule from the centre of the layer and u is the barrier

height. As there are no significant differences between

the two phases at the microscopic level, the model
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should hold in both the nematic and the smectic A

phases of the same material with the same set of

Arrhenius parameters, with the exception that the

amplitude of the periodic potential is zero in the

nematic phase. Under these assumptions, the diffusion

coefficients can be obtained as [30, 31]

DE~D0E
exp {EE

�
RT

� �

I2
0 xu=2RTð Þ

D\~D0\exp {E\=RTð Þ
ð12Þ

where I0 is the zeroth order modified Bessel function of

the first kind and x is equal to one in the smectic A

phase and zero in the nematic phase.

In principle, this theoretical result should enable us to

determine the potential for diffusing between one layer

and the next. Since this can easily be determined in a

simulation [9, 20], we can test the theory by determining

the potential barrier both directly and indirectly, or by

comparing the theoretical result for the temperature

dependence of the diffusion coefficient with that

measured in the simuation. To test the theory, we have

taken two routes. The first is to determine the potential

barrier for all temperatures in the smectic A phase, and

average this to give a single value; note that a single

temperature independent potential is assumed in the

theory. The second is to replace the barrier height with

the temperature dependent potential barrier [20]. The

Arrhenius parameters D0E� and E�E were obtained by

fitting the data for the parallel diffusion coefficient in

the nematic phase only. The resulting predictions for the

smectic A phase are shown in figure 7. It is clear that

the model in which the barrier height is independent of

temperature cannot explain the temperature dependence

of the parallel diffusion coefficient. Indeed, it does not

matter which barrier height we choose, the assumption

of a constant barrier height does not give a good

representation of the data. In contrast, if the depen-

dence of the barrier height on temperature is included,

then the model gives a much more reasonable repre-

sentation of the simulation data, although clearly this is

far from perfect since the predicted diffusion coefficient

is systematically larger than that actually measured in

the simulation. We speculate that this is because as a

molecule diffuses from one layer to the next, in addition

to overcoming the sinusoidal layering potential, it must

laterally push a small group of molecules apart to be

able to squeeze between them. Clearly this will hinder

the motion of the molecule parallel to the director, but

is not taken into account in the theoretical model as it

depends on the local in-plane structure of the smectic A

phase; only the interlayer structure of the smectic A

phase is taken into account in the theory. This should

lead to a smaller diffusion coefficient than that

predicted, as observed in the simulation.

We note that in order to test the theory for diffusion

in the smectic A phase, we must have a prior knowledge

of the layering potential. This cannot, of course, be

obtained so readily from an experiment on a real

mesogen. However, normally the opposite procedure is

adopted; namely, the barrier height in the smectic A

phase is determined from the diffusion data [30]. For

our simulation results, this method would lead to an

overprediction of the temperature dependent barrier

height by approximately 25–30%. It is clear that

this method cannot be used to determine the barrier

height accurately. However, it does give a reasonable

qualitative indication of how the barrier height changes

with temperature. In turn, this should indicate

whether the smectic order parameter, which is clearly

linked to the height of the barrier, rapidly increases

throughout the smectic A phase, or whether this is

essentially constant throughout the smectic A tempera-

ture range.

5. Orientational dynamics

When investigating rotational dynamics, dielectric

relaxation has proved to be a powerful technique [33–

35]. In the uniaxial nematic phase, there are two

principal components of the permittivity tensor, and

the frequency dependence of the real and imaginary

parts of both components can be used to explore the

Figure 7. Fits of the cosine potential model for the parallel
diffusion coefficient D�E. The lines indicate the fits for the
model with temperature dependent (solid line) and tempera-
ture independent amplitudes (dashed line). The Arrhenius
parameters have been calculated for the nematic phase only
and the barrier height(s) measured during the simulation.
(This figure is reproduced from [9, 20].)
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orientational motion [36]. Of particular interest for

nematics is the frequency dependence of the component

parallel to the nematic director,~e�E vð Þ, since, in principle,

this contains information on the potential of mean

torque responsible for the long range order of the

constituent molecules [37].

According to the Maier–Saupe theory of nematics

[37, 38], the potential of mean torque has the form

U hð Þ~{q cos2 h ð13Þ

where h is the angle between the molecular axis and the

director and q is the height of the potential barrier.

The presence of this barrier hinders rotational motion

of the molecule about its short axes and thus leads to a

longer relaxation time compared with that in the

isotropic phase extrapolated to the same temperature.

Meier and Saupe [39] introduced the idea of a

retardation factor g||5t||/to to describe the reduction in

the relaxation rate; here t|| is the relaxation time for the

parallel component of the permittivity tensor and to is

the equivalent (averaged) value in a hypothetical state

with vanishingly small potential, that is, an isotropic

state. Their extension of the Debye theory for nematics

gives the retardation factor as a function of the barrier

height as

gE~
exp sð Þ{1

s
ð14Þ

where s5q/RT. Martin et al. [40] used a more rigorous

approach to obtain numerical results for the nematic

relation time t||, and later an analytic theory which

reproduced these numerical results well was deduced, in

which the parallel retardation factor was found to be

[41]

gE~
exp sð Þ{1

s

2s

1zs
s=pð Þ1=2

z2{s

� �{1

: ð15Þ

Both theories behave qualitatively as we expect: g||.1

for the nematic phase and g|| increases with increasing q.

As the theories link experimental observables with the

height of the potential barrier in the Maier–Saupe

theory, in turn, this can be linked to the nematic order

parameter. Therefore, measurement of the retardation

factor allows us to calculate P2, under the assumption

of the extended Debye theory. As in the previous two

sections, we can test this assumption using simulation

data; we can calculate s or P2 both directly from the

simulation and indirectly from the measured value of

the retardation factor [27].

The rotational motion in the director-based labora-

tory frame was studied through the relevant function

for relaxation parallel to the director, namely [35, 42]

cE t�ð Þ~Scos bo cos bt�T~S ui(0):nð Þ ui t�ð Þ:nð ÞT ð16Þ

where bt* is the angle made by the molecular long axis

with the director at time t* and ui(t*) and n are unit

vectors describing the orientation of molecule i at time

t* and the director, respectively [27, 35, 42]. The

correlation function c||(t*) is shown in figure 8 (a) in

the isotropic and nematic phase of the GB(4.4,20,1,1)

mesogen. The decay in this function is found to be well

represented by a single exponential function [27, 36]

cE t�ð Þ~cE 0ð Þexp {t�
.

t�E

� �
ð17Þ

Figure 8. (a) The orientational correlation function c||(t*) for
state points taken from the isochore r*50.16. From top to
bottom: the nematic phase at T*51.2 and 1.4 and the isotropic
phase at T*51.6. The inset shows the same data as a semi-
logarithmic plot. (b) Arrhenius plot of the temperature
dependence of the relaxation times t�E and t�o. Open symbols
denote data for the isotropic or supercooled isotropic phase;
filled symbols denote data for the nematic phase. The straight
lines indicate the best fit for the Arrhenius relationship. (This
figure is reproduced from [27].)
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in which the initial value is predicted [42] and found to

be

cE 0ð Þ~Scos2 bT~
1

2
z

2

3
P2: ð18Þ

This single exponential decay means that the frequency

dependence of the imaginary component of ~e�E vð Þ is a

Lorentzian with a maximum occuring at t�{1
E , as found

for nematic liquid crystals with an electric dipole

parallel to the long axis. Once this decay was

established, further simulations at different tempera-

tures and densities were performed to determine the

variation in the relaxation time t�E. Of course, to

calculate the retardation factor, g||, we need the

relaxation time for a hypothetical state in which the

potential of mean torque vanishes. For real systems, this

is only obtainable by extrapolating results from the

isotropic phase to temperatures in the nematic phase,

assuming Arrhenius behaviour. In the simulations, an

alternative is available. An isotropic phase can be

supercooled and the relaxation times measured at the

correct temperature but for an isotropic system; this

only works because the relaxation times are relatively

fast compared with the build-up of orientational order

when the isotropic is quenched to a temperature

corresponding to the nematic phase [27]. The relaxation

times measured in this way, see figure 8 (b), indicate that

the Arrhenius relationship for t�o is perfectly valid. We

also note that there is a distinct jump in the relaxation

time at the transition to the nematic phase, as we expect

for a first order transition, and that the relaxation times

in the nematic are larger than those in the hypothetical

state with vanishing potential of mean torque, again as

we expect. Since we can calculate both t�E and t�o, it is

straightforward to calculate the retardation factor, g||,

as a function of temperature and density. Thus the

Maier–Saupe strength parameter can then be deter-

mined, assuming one of the models for reorientation in

the nematic phase, equations (14) and (15). However, we

can also calculate the Maier–Saupe strength parameter,

s, directly from the simulation [8, 9, 27]. This means

that, for the simulation data, we can determine g|| as a

function of s making no implicit assumptions and this

can then be used to investigate the accuracy of the

theories.

The results for the isochore r*50.16 are shown in

figure 9 (a). A similar plot in figure 9 (b) shows results

for systems at higher densities and, hence, higher order

parameters. It is clear from these results that the

retardation factor for the GB(4.4,20,1,1) model

increases with increasing potential of mean torque, as

we expect. However, we notice that although this

increase occurs, it is not in very good agreement with

either the theory of Meier and Saupe [39] or that of

Martin et al. [40]. Indeed, both theories overpredict the

retardation factor for any given value of s.

Aternatively, for a given measured retardation factor,

the strength parameter, s, and the order parameter, P2,

are underestimated. Although the quantitative agree-

ment is not good, the form of the increase does appear

to be reasonable. The Martin–Meier–Saupe theory [40]

typically underestimates s by about 15%, which causes

Figure 9. The retardation factor g|| as a function of the
Maier–Saupe strength parameter s5q/RT. (a) Along the
isochore r*20.16 for various system sizes; (b) for isochores
r*50.17, 0.18 and 0.19. The predictions of the Meier–Saupe
theory are shown as the dotted line and Martin–Meier–Saupe
theory by the solid line. Correpsonding values of P2 are shown
along the top x-axis (non-linear scale). (This figure is
reproduced from [27].)
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an underestimation in P2 of about 0.1 for order

parameters in the range 0.4 to 0.7, values typical of

most real nematics. We also note that there is some

density dependence of the retardaton factor; thus,

different values of g|| are seen for the same value of s
at different densities. This may mean that free volume

effects, which are ignored in the theory, may play a
secondary role in the relaxation process.

6. Conclusions

We have shown that coarse-grained models, such as the

Gay–Berne potential here, can reproduce the essential

features of the phase diagrams of real liquid crystals.

However, as well as being able to determine the phase

diagram for these models, we can use them to under-

stand, and investigate the accuracy of, the analysis of

real systems. We have performed three types of

computer experiment for the GB(4.4,20,1,1) model in
which the structure, translational diffusion and orienta-

tional dynamics have been probed. In each case, the

experimental results have been compared with those of

real molecules where possible, and the simulations

results have been analysed exactly as one would analyse

real data. This, combined with certain theoretical

assumptions, gives an indirect route to some property

of the liquid crystal. Since this property can also be
determined exactly from the simulation, the simulation

route provides an opportunity to test the assumptions

made in the theory and analysis.
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